Discussion about this post

User's avatar
Corentin's avatar

I was thinking of this passage: "we define the so-called transposition matrices by switching the i-th and j-th rows of the identity matrix". If it's the identity matrix, then it has 1s on the diagonal everywhere but on lines i and j I suppose. It caught my eye because otherwise I don't see how P^2 = I could work out.

Expand full comment
Karsten's avatar

Fascinating post, many thanks!

If I understood correctly, it doesn't matter whether the nonnegative matrix A is irreducible or not, it always has a Frobenius normal form. However, is irreducibility (or reducibility) of A somehow reflected in the normal form?

Expand full comment
18 more comments...

No posts